Machine Learning Engineering
Der allgegenwärtige Hype um Machine Learning und Artificial Intelligence kann den Eindruck vermitteln, dass Software mit ML-Modellen einfach zu entwickeln ist. Laut diversen Studien scheitern allerdings fast 80 % der ML-Projekte.
Machine Learning Engineering – 10 fundamentale Praktiken
In diesem Vortrag stellt Larysa Visengeriyeva fundamentale Praktiken für Machine Learning Engineering vor, die dabei helfen, das eigene Projekt zum Erfolg zu bringen.
We‘d love to show you a YouTube video right here. To do that, we need your consent to load third party content from youtube.com
Links and Resources
- Machine Learning Canvas: A framework to design Machine Learning systems
- DDD Knowledge Crunching Methods
- Towards CRISP-ML(Q): A Machine Learning Process Model with Quality Assurance Methodology
- What is the Team Data Science Process?
- There's No AI (Artificial Intelligence) without IA (Information Architecture)
- Machine Learning Testing: Survey, Landscapes, and Horizons
- Data Version Control
- AI Fairness 360 Open Source Toolkit (IBM)
- Responsible AI (Microsoft)
- Responsible AI (Google)
- MLOps
INNOQ Library
Dr. Larysa Visengeriyeva
Head of Data and AI
We’d love to assist you in your digitalization efforts from start to finish. Please do not hesitate to contact us.
Get in touch!