Machine Learning Engineering
Machine Learning Engineering – 10 fundamentale Praktiken
In diesem Vortrag stellt Larysa Visengeriyeva fundamentale Praktiken für Machine Learning Engineering vor, die dabei helfen, das eigene Projekt zum Erfolg zu bringen.
We‘d love to show you a YouTube video right here. To do that, we need your consent to load third party content from youtube.com
Links and Resources
- MLOps
- Responsible AI (Google)
- Responsible AI (Microsoft)
- AI Fairness 360 Open Source Toolkit (IBM)
- Data Version Control
- Machine Learning Testing: Survey, Landscapes, and Horizons
- There's No AI (Artificial Intelligence) without IA (Information Architecture)
- What is the Team Data Science Process?
- Towards CRISP-ML(Q): A Machine Learning Process Model with Quality Assurance Methodology
- DDD Knowledge Crunching Methods
- Machine Learning Canvas: A framework to design Machine Learning systems
INNOQ Library
-
Domain-Driven Design Referenz - Definitionen & Muster
Domain-driven Design spielt beim Entwerfen und Umsetzen von fachlich anspruchsvollen Systemen eine entscheidende Rolle. Für das Verständnis von DDD ist die DDD-Referenz von Eric Evans eine unverzichtbare Quelle – und liegt mit diesem Buch erstmalig in deutscher Übersetzung vor. Sowohl die Originalversion, als auch die Übersetzung stehen unter Creative-Common-Lizenz.
-
Hands-on Domain-driven Design – by example
Domain-driven Design practically explained with a massive case study.
This book aims to explain the concepts of Domain-driven Design in a way that it is easily applicable in practice. Each chapter contains a theoretical part which is explained from the point of view of practical applicability and then exercises with solutions based on a comprehensive, complex case study (real estate loans).
We’d love to assist you in your digitalization efforts from start to finish. Please do not hesitate to contact us.
Get in touch!