Vortrag

Back of the envelope calculation for machine learning projects

One of the best practices that we know from great engineers is the back-of-the-envelope calculation to estimate costs and resources. I believe that in Machine Learning Engineering, we all would benefit from such a “back-of-the-envelope calculation” skill to create a prototype of an ML Project. We need to confirm - as cheaply as possible - that our future ML project is worthwhile, that it will solve my business problem, and that costs and resources are feasible. In my talk, I suggest a design toolkit for ML projects to perform such rough prototyping by using three canvases: Machine Learning Canvas, Data Landscape Canvas, and MLOps Stack Canvas.

Datum
01.12.2021
Uhrzeit
14:15 - 15:00
Online Event
INNOQ Technology Day 2021
  • Folie 1
    1/29
  • Folie 2
    2/29
  • Folie 3
    3/29
  • Folie 4
    4/29
  • Folie 5
    5/29
  • Folie 6
    6/29
  • Folie 7
    7/29
  • Folie 8
    8/29
  • Folie 9
    9/29
  • Folie 10
    10/29
  • Folie 11
    11/29
  • Folie 12
    12/29
  • Folie 13
    13/29
  • Folie 14
    14/29
  • Folie 15
    15/29
  • Folie 16
    16/29
  • Folie 17
    17/29
  • Folie 18
    18/29
  • Folie 19
    19/29
  • Folie 20
    20/29
  • Folie 21
    21/29
  • Folie 22
    22/29
  • Folie 23
    23/29
  • Folie 24
    24/29
  • Folie 25
    25/29
  • Folie 26
    26/29
  • Folie 27
    27/29
  • Folie 28
    28/29
  • Folie 29
    29/29

Nach links wischen, um ggf. weitere Folien zu sehen

Scrollen oder die Pfeiltasten nutzen, um ggf. weitere Folien zu sehen

Scrollen, um ggf. weitere Folien zu sehen

Die Pfeiltasten nutzen, um ggf. weitere Folien zu sehen

Folien downloaden